8 comments

  • tiernano 8 hours ago
    Hmmm.... Wondering if this could be eventually used to emulate a PCIe card using another device, like a RaspberryPi or something more powerful... Thinking the idea of a card you could stick in a machine, anything from a 1x to 16x slot, that emulates a network card (you could run VPN or other stuff on the card and offload it from the host) or storage (running something with enough power to run ZFS and a few disks, and show to the host as a single disk, allowing ZFS on devices that would not support it). but this is probably not something easy...
    • MisterTea 6 minutes ago
      This kind of stuff is stupid easy on an OS like Plan 9 where you speak a single protocol: 9P. Ethernet devices are abstracted and served by the kernel as a file system explained in ether(3). Since it's all 9P the system doesn't care where the server is running; could be a local in-kernel/user-space server or remote server over ANY 2-way link including TCP, IL, PCIe link, RS232 port, SPI, USB, etc. This means you can mount individual pieces of hardware or networking stacks like ip(3), any 9P server, from other machines to a processes local namespace. Per-process name spaces let you customize the processes view of the file system and hence all its children allowing you to customize each and every programs resource view.

      There is interest in getting 9front running on the Octeon chips. This would allow one to run anything they want on an Octeon card (Plan 9 cross platform is first class) so one could boot the card using the hosts root file system, write and test a program on the host, change the objtype env variable to mips/arm, build the binary for the Octeon and then run it on the Octeon using rcpu (like running a command remotely via ssh.) All you need is a working kernel on the Octeon and a host kernel driver and the rest is out of the box.

    • cakehonolulu 5 hours ago
      Hi! Author here! You can technically offload the transactions the real driver on your host does to wherever you want really. PCI is very delay-tolerant and it usually negotiates with the device so I see not much of an issue doing that proven that you can efficiently and performantly manage the throughput throughout the architecture. The thing that kinda makes PCIem special is that you are pretty much free to do whatever you want with the accesses the driver does, you have total freedom. I have made a simple NVME controller (With a 1GB drive I basically malloc'd) which pops up on the local PCI bus (And the regular Linux's nvme block driver attaches to it just fine). You can format it, mount it, create files, folders... it's kinda neat. I also have a simple dumb rasteriser that I made inside QEMU that I wanted to write a driver for, but since it doesn't exist, I used PCIem to help me redirect the driver writes to the QEMU instance hosting the card (Thus was able to run software-rendered DOOM, OpenGL 1.X-based Quake and Half-Life ports).
      • yndoendo 3 hours ago
        Just to hijack this thread on how resilient PCIe is. PS4 Linux hackers ran PCIe over UART serial connection to reverse engineer the GPU. [0] [1]

        [0] https://www.psdevwiki.com/ps4/PCIe

        [1] https://fail0verflow.com/blog/2016/console-hacking-2016-post...

      • topspin 1 hour ago
        > PCI is very delay-tolerant

        That fascinates me. Intel deserves a lot of credit for PCI. They built in future proofing for use cases that wouldn't emerge for years, when their bread and butter was PC processors and peripheral PC chips, and they could have done far less. The platform independence and general openness (PCI-SIG) are also notable for something that came from 1990 Intel.

      • tonyplee 2 hours ago
        Can one make a PCIe analyzer out of your code base by proxy all transactions thru a virtual PCIem driver to a real driver?
        • cakehonolulu 1 hour ago
          You can definitely proxy the transactions wherever you may see fit, but I'm not completely sure how that'd work.

          As in, PCIem is going to populate the bus with virtually the same card (At least, in terms of capabilities, vendor/product id... and whanot) so I don't see how you'd then add another layer of indirection that somehow can transparently process the unfiltered transaction stream PCIem provides to it to an actual PCIe card on the bus. I feel like there's many colliding responsabilities in this.

          I would instead suggest to have some sort of behavioural model (As in, have a predefined set of data to feed from/to) and have PCIem log all the accesses your real driver does. That way the driver would have enough infrastructure not to crash and at the same time you'd get the transport layer information.

      • jacquesm 5 hours ago
        Fantastic tool, thank you for making this it is one of those things that you never knew you needed until someone took the time to put it together.
      • gigatexal 5 hours ago
        This is really interesting. Could it be used to carve up a host GPU for use in a guest VM?
        • anonymous123 8 minutes ago
          This is a bit outside my expertise, but I'm curious: what practical use case would benefit from using PCIem instead of virtio-gpu directly?

          From what I can tell, PCIem seems to be a framework for prototyping custom PCIe devices in QEMU, whereas virtio-gpu is an existing standardized virtual GPU interface.

          If the goal is to have PCIem present a virtio-gpu device to the guest, it would need to implement the virtio protocol perfectly. Without that, the guest OS's standard virtio driver won't recognize it.

          The QEMU docs [1] note that virtio-gpu already supports PCI and MMIO transports:

          > The VGA ones always use the PCI interface, but for the non-VGA ones, the user can further pick between MMIO or PCI.

          So, for standard graphics virtualization, using QEMU's native virtio-gpu device seems much simpler since the backend and guest drivers are already established.

          A key reason to use a custom framework like PCIem would be for research or development that goes beyond what the standard device offers.

          For example:

          * Prototyping experimental PCIe features (e.g. new interrupt mechanisms, custom BAR configurations) and testing how a virtio device behaves with them.

          * Creating a modified virtio-gpu device that adds non-standard capabilities, requiring a custom guest driver to use them.

          For those interested in advanced virtio-gpu usage, the Android Emulator team has done significant work with rutabaga_gfx [2], which is a backend for virtio-gpu that mediates between the guest's graphics API calls (like OpenGL ES) and the host's GPU. It's a great real-world example of extending the virtio-gpu ecosystem. Personally, I found it quite an interesting read.

          [1] https://qemu.readthedocs.io/en/v8.2.10/system/devices/virtio...

          [2] https://github.com/magma-gpu/rutabaga_gfx

          [3] https://android.googlesource.com/platform/external/qemu/+/em...

          edit: Fix formatting.

        • cakehonolulu 5 hours ago
          As in, getting the PCIem shim to show up on a VM (Like, passthrough)? If that's what you're asking for, then; it's something being explored currently. Main challenges come from the subsystem that has to "unbind" the device from the host and do the reconfiguration (IOMMU, interrupt routing... and whatnot). But from my initial gatherings, it doesn't look like an impossible task.
        • fc417fc802 3 hours ago
          > carve up

          Passthru or time sharing? The latter is difficult because you need something to manage the timeslices and enforce process isolation. I'm no expert but I understand it to be somewhere between nontrivial and not realistic without GPU vendor cooperation.

          Note that the GPU vendors all deliberately include this feature as part of their market segmentation.

          • benreesman 2 hours ago
            It would need to implement a few dozen ioctls, correctly stub the kernel module in guests, do a probably memory-safe assignment of GPU memory to guest, and then ultimately map that info to BAR/MSI-X semantics of a real kernel module. You could get VFIO pretty fast for a full start by correctly masking LTR bits, but to truly make it free you'd need a user space io_uring broker that had survived hundreds of millions of adversarial fuzz runs because there's only so fast the firmware blob can run even if it's preloaded into initramfs.

            Serious work, detail intense, but not so different in design to e.g. Carmack's Trinity engine. Doable.

    • pjc50 7 hours ago
      > emulate a PCIe card using another device

      The other existing solution to this is FPGA cards: https://www.fpgadeveloper.com/list-of-fpga-dev-boards-for-pc... - note the wide spread in price. You then also have to deal with FPGA tooling. The benefit is much better timing.

      • cakehonolulu 5 hours ago
        Indeed, and even then, there's some sw-hw-codesign stuff that kinda helps you do what PCIem does but it's usually really pricey; so I kinda thought it'd be a good thing to have for free.

        PCIe prototyping is usually not something super straightforward if you don't want to pay hefty sums IME.

        • immibis 4 hours ago
          The "DMA cards" used for video game cheating are generic PCIe cards and (at least the one I got) comes with open documentation (schematics, example projects etc).
          • the_biot 2 hours ago
            What's this? Hardware specifically for game cheating? Got any links?
            • selectodude 1 hour ago
              If you search “DMA card”, there’s a lot of DMA cards all over the internet.
            • idiotsecant 1 hour ago
              Direct Memory Access (DMA) via PCI-e bypasses anti-cheat in the OS because the OS doesn't see the call to read or write the memory. There's no process to spy on, weird drivers, system calls, etc. You can imagine that maybe the anticheat could detect writes that perform a cheat by this method, but it has zero chance of detecting a wallhack style cheat that just reads memory. This is getting to be less relevant with modern OSs, though. Window 11 has IOMMU which only allows DMA to a given memory region defined per device. I think it should be impossible to do this on win11.
    • Palomides 5 hours ago
      some ARM chips can do PCIe endpoint mode, and the kernel has support for pretending to be an nvme ssd https://docs.kernel.org/nvme/nvme-pci-endpoint-target.html
    • wmf 23 minutes ago
      This is what DPUs are for.
    • xerxes901 7 hours ago
      Something like the stm32mp2 series of MCUs can run Linux and act as a PCIe endpoint you can control from a kernel module on the MCU. So you can program an arbitrary PCIe device that way (although it won’t be setting any speed records, and I think the PHY might be limited to PCIe 1x)
      • tiernano 7 hours ago
        interesting... x1 would too slow for large amounts of storage, but as a test, a couple small SSDs could potentially be workable... sounds like im doing some digging...
        • jacquesm 5 hours ago
          There are many workloads that would not be able to saturate even an x1 link, it all depends on how much of the processing can be done internally to whatever lives on the other side of that link. Raw storage and layer-to-layer communications in AI applications are probably the worst cases but there are many more that are substantially better than that.
        • cakehonolulu 5 hours ago
          If there's any particular feature you feel you are missing on PCIem or anything, feel free to open an Issue and I'll look into it ;)
    • hsbauauvhabzb 7 hours ago
      … or pcie over ethernet ;)
    • immibis 4 hours ago
      I recently bought a DMA cheating card because it's secretly just an FPGA PCIe card. Haven't tried to play around with it yet.

      Seems unlikely you'd emulate a real PCIe card in software because PCIe is pretty high-speed.

    • justsomehnguy 4 hours ago
  • petabyt 21 minutes ago
    vhci-hcd for USB has been so useful for usb development. Especially for testing usb driver code in CI.
  • Surac 7 hours ago
    that is a huge win if you are developing drivers or even real hardware. it allows to iterate on protokols just with the press of a button
    • cakehonolulu 5 hours ago
      Indeed, the project has gone through a few iterations already (It was first a monolithic kernel module that required a secondary module to call into the API and whatnot). I've went towards a more userspace-friendly usage mainly so that you can iterate your changes much, much faster. Creating the synthetic PCI device is as easy as opening the userspace shim you program, it'll then appear on your bus. When you want to test new changes, you close the shim normally (Effectively removing it from the bus) and you can do this process as many times as needed.
      • LarsKrimi 5 hours ago
        Latching on to this thread, but can you make as simple as possible of an example?

        Something like just a single BAR with a register that printfs whatever is written

        • cakehonolulu 5 hours ago
          Hi! I do have some rudimentary docs on which I made a simple device for example pruposes: https://cakehonolulu.github.io/docs/pciem/simple_device_walk...

          Hopefully this is what you're searching for!

          • LarsKrimi 4 hours ago
            Hi, thanks. That's almost it. The remaining problem is just how to tie it together (where do I put the handle_mmio_read pointer or which event should it be handled in?)

            PCIEM_EVENT_MMIO_READ is defined but not used anywhere in the codebase

            • cakehonolulu 3 hours ago
              Hi! Sorry, this is an issue on my side; I forgot to update the documentation's example with the latest changes.

              You basically have the kernel eventfd notify you about any access triggered (Based on your configuration), so from userspace, you have the eventfd and then you mmap the shared lock-less ring buffer that actually contains the events PCIem notifies (So you don't end up busy polling).

              You basically mmap a struct pciem_shared_ring where you'll have your usual head/tail pointers.

              From then on, on your main, you'd have a select() or a poll() for the eventfd; when PCIem notifies the userspace you'd check head != tail (Which means there are events to process) and you can basically do:

              struct pciem_event *event = &event_ring->events[head]; atomic_thread_fence(memory_order_acquire); if (event->type == PCIEM_EVENT_MMIO_WRITE) handle_mmio_read(...);

              And that's it, don't forget to update the head pointer!

              I'll go and update the docs now. Hopefully this clears stuff up!

    • asimovDev 5 hours ago
      Could you explain in layman terms how it would help with developing PCIE hardware / drivers? I can immediately imagine something like writing more robust unit tests and maybe developing barebones drivers before you get access to actual hardware, but that's where my imagination runs out of fuel.
      • cakehonolulu 4 hours ago
        Sure! Let's say you (Or the company you work for) are trying to develop an NVME controller card, or a RAID card, or a NIC...

        Usually, without actual silicon, you are pretty limited on what you can do in terms of anticipating the software that'll run.

        What if you want to write a driver for it w/o having to buy auxiliary boards that act as your card? What happens if you already have a driver and want to do some security testing on it but don't have the card/don't want to use a physical one for any specific reason (Maybe some UB on the driver pokes at some register that kills the card? Just making disastrous scenarios to prove the point hah).

        What if you want to add explicit failures to the card so that you can try and make the driver as tamper-proof and as fault-tolerant as possible (Think, getting the PCI card out of the bus w/o switching the computer off)?

        Testing your driver functionally and/or behaviourally on CI/CD on any server (Not requiring the actual card!)?

        There's quite a bunch of stuff you can do with it, thanks to being in userspace means that you can get as hacky-wacky as you want (Heck, I have a dumb-framebuffer-esque and OpenGL 1.X capable QEMU device I wanted to write a driver for fun and I used PCIem to forward the accesses to it).

  • throwaway132448 7 hours ago
    Tangential question: PCIe is a pretty future-proof technology to learn/invest in, right? As in, it is very unlikely to become obsolete in the next 5-10 years (like USB)?
    • pjc50 7 hours ago
      Neither of those is going to be obsolete in 5 years. Might get rebadged and a bunch of extensions, but there's such a huge install base that rapid change is unlikely. Neither Firewire nor Thunderbolt unseated USB.
      • formerly_proven 6 hours ago
        USB4 is the ~third USB protocol stack though (USB1/2 being basically the same iirc, USB3 being a completely separate protocol that neither logically nor physically interacts with USB1/2 at all), heavily based on Thunderbolt to the point of backwards compatibility.
        • p_l 5 hours ago
          USB4 is essentially thunderbolt with some new features and some features being optional instead of mandatory.
          • formerly_proven 3 hours ago
            A very noticeable feature is that USB4 can tunnel USB3, which means it works like an USB hub, instead of an external PCIe USB controller (like in Thunderbolt). USB2 is still just physically separately transported over the D+/D- pins.
            • p_l 53 minutes ago
              USB4 actually provides both USB 1/2 and 3 tunnelling, but it's incorrect to say it behaves like a hub because it involves needing an appropriate endpoint on the other end. Effectively a virtual cable, iirc, though there are at least two different mechanisms.
    • CupricTea 3 hours ago
      PCIe is probably the most future proof technology we have right now. Even if it is upheaveled at the hardware level, from the software perspective it just exposes a device's arbitrary registers to some memory mapped location. Software drivers for PCIe devices will continue to work the same.
    • neocron 7 hours ago
      Might as well be replaced by optical connectors next years, but who knows in advance. Currently there is no competition
      • pjc50 4 hours ago
        Hmm. What's the current maths on distance vs edge rate vs transceiver latency vs power consumption on when that would be a benefit? Not to mention how much of a pain it is to have good optical connectors.

        I wouldn't expect that to be mainstream until after optical networking becomes more common, and for consumer hardware that's very rare (apart from their modem).

      • tiernano 7 hours ago
        even though it would be optical, it still is using PCIe protocols in the background...
        • bobmcnamara 3 hours ago
          PCIe is still using PCI protocol just over serdes
        • embedding-shape 6 hours ago
          How could you possibly know exactly what protocol they'd be using for the potential future optical PCIe connection? Your guess is as good as anyone's, no?
          • p_l 5 hours ago
            Probably because optical PCI-E is an old thing by now.

            In fact, "zero~th generation" of thunderbolt used optical link, too. Also both thunderbolt and DisplayPort reuse a lot of common elements from PCI-E

    • checker659 7 hours ago
      Curious what you mean by learning? Learning about TLPs? Learning about FPGA DMA Engines like XDMA? Learning about PCIe switches / retimers? Learning about `lspci`?
    • GrowingSideways 2 hours ago
      PCIe expertise will certainly outlive anyone on this forum.
  • JoshTriplett 1 hour ago
    Any plans to upstream the kernel-side support?
    • cakehonolulu 1 hour ago
      I'd love to! Sure sounds like the natural next step for this.
  • agent013 4 hours ago
    I've been burned before by driver bugs that only manifested under very specific timing conditions or malformed responses from the device, tnx
    • cakehonolulu 4 hours ago
      Anytime, hopefully it fits your needs and helps you not spend more time than needed tracing issues like this. Thanks for the comment!